O seu Blog de Psicometria

Tenha acesso à nossa enciclopédia virtual de conhecimento em Psicometria e Análise de Dados

Junte-se a mais de 22.300 membros e receba conteúdos exclusivos e com prioridade

Compartilhe nas Redes Sociais

Como testar a normalidade da amostra com Kolgomorov-Smirnov e Shapiro-Wilk

Bruno Damásio

jul 8, 2021

Como testar a normalidade da amostra com Kolgomorov-Smirnov e Shapiro-Wilk.

Os testes de Kolgomorov-Smirnov e Shapiro-Wilk são utilizados para determinar se uma amostra segue uma distribuição normal.

Vale lembrar que a distribuição normal é quando os valores de uma variável se distribuem seguindo uma forma de sino em um gráfico de distribuição. Você pode relembrar o que é a distribuição normal neste artigo.

Muitos testes estatísticos partem como pressuposto que a distribuição das variáveis seja normal, então é bem comum precisarmos avaliar se isso acontece na nossa amostra. Alguns exemplos de testes que presumem a normalidade são o teste-t, a regressão linear e as análises fatoriais exploratória e confirmatória.

Como o teste Kolgomorov-Smirnov funciona?

O teste Kolgomorov-Smirnov (KS) busca avaliar a distância entre uma distribuição conhecida e uma distribuição que foi observada empiricamente.

A hipótese nula do KS é que a amostra segue a mesma distribuição que a normal. A hipótese alternativa diz que as duas distribuições são diferentes. Portanto, se queremos confirmar a normalidade de uma variável, precisamos que o valor de p seja maior que 0,05 (ou seja qual for o valor de significância estabelecido).

No entanto, temos um porém: o KS é confiável quando estamos comparando com uma distribuição normal conhecida. Ou seja, sabemos a média e desvio-padrão da curva normal que estamos comparando. Por exemplo, podemos saber a distribuição de inteligência na população.

Caso isso não seja possível, existe uma modificação do KS, o teste de Lilliefors, cuja interpretação é semelhante e tem maneiras mais confiáveis de estimar a curva normal a partir dos dados da amostra.

Qual a diferença para o Shapiro–Wilk?

O teste Shapiro–Wilk testa especificamente se uma distribuição é diferente de uma distribuição normal. Ou seja, não podemos usar ele para testar outras distribuições.

Mas ele funciona de maneira semelhante, a hipótese nula é que as duas distribuições (normal e observada) são semelhantes. Já a hipótese alternativa é que as distribuições são distintas. Portanto, para considerarmos a distribuição como normal, esperamos que p >0,05.

Quando devo usar o teste de Kolgomorov-Smirnov ou Shapiro-Wilk ?

Embora o poder de ambos os testes se mostra baixo em amostras pequenas, o Shapiro-Wilk tem se mostrado superior ao Kolgomorv-Smirnov em diversos tamanhos amostrais. 

Como testar a normalidade da amostra no SPSS?

No SPSS usando a opção Explorar do menu Estatísticas Descritivas. Este procedimento é detalhado a
seguir.

Com o banco de dados aberto no SPSS, quero verificar a normalidade da variavel “total perceived stress” (Estresse total percebido):

  1. No menu na parte superior da
    tela, clique em Analisar e selecione
    Estatísticas Descritivas e, em seguida, Explorar
  2. Clique na(s) variável(ais)
    em que você está interessado (por exemplo, estresse total percebido:
    Clique no botão de seta para movê-los para o Dependente
  3. Clique em Gráficos

 
 

Os próximos passos são: 

  1. Marque a opção: Gráficos de normalidade com teste
  2. Clique em Continuar e depois em OK

A saída selecionada gerada a partir deste procedimento é mostrada abaixo:

 

Na tabela intitulada Descritivas, você tem estatísticas descritivas e outras informações sobre suas variáveis. Se você especificou uma variável de agrupamento na Lista de Fatores, essas informações serão fornecidas separadamente para cada grupo, e não para a amostra como um todo. Algumas dessas informações você reconhecerá (média, mediana, desvio padrão, mínimo, máximo etc.).

Uma estatística que você pode não saber é a média aparada de 5%. Para obter esse valor, o SPSS remove os 5% superiores e inferiores de seus casos e calcula um novo valor médio. Se você comparar a média original (26,73) e essa nova média aparada (26,64), poderá ver se suas pontuações extremas estão exercendo forte influência sobre a média. Se esses dois valores médios forem muito diferentes, talvez seja necessário investigar melhor esses pontos de dados. Os valores de ID dos casos mais extremos são mostrados na tabela Valores Extremos.

Os valores de assimetria e curtose também são fornecidos como parte desta saída, fornecendo informações sobre a distribuição de pontuações para os dois grupos.

Na tabela intitulada Testes de normalidade, você tem os resultados da estatística Kolmogorov-Smirnov e Shapiro-Wilk. Isso avalia a normalidade da distribuição dos escores. Um resultado não significativo (valor Sig. superior a 0,05) indica normalidade.

Neste caso, o Sig. o valor é 0,000, sugerindo violação da suposição de normalidade. Isso é bastante comum em amostras maiores.

 Os testes citados, por serem testes de hipótese, tem um problema em comum. Se a amostra for muito grande, eles tendem a rejeitar a hipótese nula, mesma que a diferença entre as distribuições testadas seja muito pequena. Portanto, para amostras grandes, devemos usar outros métodos além destes para avaliar a distribuição, como a análise de gráficos Q-Q.

Agora você já sabe como interpretar o teste de normalidade das suas variáveis através do teste Kolgomorov-Smirnov, Lilliefors e o Shapiro-Wilk. Lembre-se que estas são algumas das maneiras de verificar a normalidade, mas não são as únicas. Você também pode avaliar o gráfico Q-Q, além de medidas de assimetria e curtose! Se você ficou com alguma dúvida sobre a importância da normalidade, temos um artigo ótimo sobre o assunto, aqui.

Faça seu cadastro na newsletter para não perder nenhuma postagem! 

Bruno Figueiredo Damásio

Sou Psicólogo, mestre e doutor em Psicologia. Venho me dedicando à Psicometria desde 2007.

Fui professor e chefe do Departamento de Psicometria da UFRJ durante os anos de 2013 a 2020. Fui editor-chefe da revista Trends in Psychology, da Sociedade Brasileira de Psicologia (SBP) eEditor-Associado da Spanish Journal of Psychology, na sub-seção Psicometri e Métodos Quantitativos.

Tenho mais de 50 artigos publicados e mais de 3000 citações, nas melhores revistas nacionais e internacionais.

Compartilhe sua opinião sobre este post

Deixe um comentário

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

Posts sugeridos

Como criar gráficos no R com o ggplot2?

Como reestruturar o formato do banco de dados no R?

Como juntar bancos de dados no R com o dplyr?

Conteúdo

Mais lidos

O que é regressão linear simples?

O que é correlação de Spearman?

Como criar gráficos no R com o ggplot2?

O que é correlação de Pearson?

Postados recentemente