O seu Blog de Psicometria

Tenha acesso à nossa enciclopédia virtual de conhecimento em Psicometria e Análise de Dados

Junte-se a mais de 22.300 membros e receba conteúdos exclusivos e com prioridade

Compartilhe nas Redes Sociais

Diferença entre as regressões logísticas: binária, ordinal e multinomial

Alex França

nov 5, 2023

A análise de regressão é uma técnica amplamente utilizada para verificar a existência de uma relação entre uma variável resposta e uma ou mais variáveis independentes.

Existem diferentes tipos de regressão, cada um adequado para diferentes tipos de variáveis resposta. Neste post, exploraremos as nuances entre os três tipos de regressão logística: binária, ordinal e multinomial.

Quando usar regressão logística

Antes de mergulharmos nos diferentes tipos de regressão logística, é importante entender o que é essa técnica e como ela funciona. A regressão logística é aplicada quando a variável dependente é categórica ou binária.

Ela é usada para modelar a probabilidade de ocorrência de um evento, com base em uma ou mais variáveis independentes. De modo simples, a diferença entre a regressão linear e a logística, que enquanto na linear prevê um valor numérico, a regressão logística estima a probabilidade de uma categoria ou evento acontecer.

Qual é o objetivo da regressão logística binária

A regressão logística binária é o tipo mais comum de regressão logística. É utilizada quando a variável dependente tem apenas duas categorias possíveis, como “sim” ou “não”, “sucesso” ou “fracasso”.

Por exemplo, podemos usar a regressão logística binária para prever se um estudante será aprovado ou reprovado em um exame com base em suas horas de estudo.

Nesse tipo de regressão, a variável resposta é transformada em uma probabilidade de ocorrência do evento de interesse.

Suposições da Regressão logística Binária:

-A variável dependente deve ser dicotômica.

-As variáveis independentes podem ser de qualquer tipo: nominal, ordinal, intervalar ou de razão.

– As observações devem ser independentes umas das outras.

– Não deve haver multicolinearidade, ou seja, as variáveis independentes não devem ser altamente correlacionadas entre si.

Exemplos:

Previsão de aprovação de crédito (aprovado/não aprovado).

Diagnóstico médico (doença presente/ausente).

Qual é o objetivo da regressão logística ordinal

A regressão logística ordinal é utilizada quando a variável resposta é categórica ordinal, ou seja, possui três ou mais categorias que têm uma ordem natural.

Por exemplo, podemos usar a regressão logística ordinal para prever a satisfação dos clientes em uma escala de “muito insatisfeito” a “muito satisfeito” com base em suas características demográficas.

Ao executar a regressão logística ordinal, será levado em conta esta ordem e teremos as informações de contribuição de cada variável independente.

Suposições da Regressão logística Ordinal:

-A variável dependente é ordinal.

-As variáveis independentes podem ser contínuas ou categóricas.

Exemplos:

Avaliação de satisfação de clientes (muito insatisfeito, insatisfeito, neutro, satisfeito, muito satisfeito).

Classificação de dor em pacientes (sem dor, dor leve, dor moderada, dor intensa).

Qual é o objetivo da regressão logística multinomial

A regressão logística multinomial é utilizada quando a variável resposta é categórica nominal, ou seja, possui três ou mais categorias que não têm uma ordem natural.

Por exemplo, podemos usar a regressão logística multinomial para prever a preferência de compra de um produto entre três ou mais marcas diferentes com base nas características dos consumidores.

Suposições da Regressão logística Multinomial:

-A variável dependente é nominal com mais de duas categorias.

-Independência das observações.

-Não há relação de ordem entre as categorias da variável dependente.

-A multicolinearidade deve ser evitada.

Exemplos:

Previsão de qual partido político um eleitor irá escolher (Partido A, Partido B, Partido C).

Decisão de compra de consumidores (compra produto A, produto B, ou nenhum).

Comparação entre os tipos de regressão logística

A principal diferença entre os tipos de regressão logística está no número de categorias da variável resposta e na ordem ou falta de ordem entre essas categorias.

A regressão logística binária é utilizada quando há apenas duas categorias, a regressão logística ordinal é utilizada quando há três ou mais categorias com uma ordem natural, e a regressão logística multinomial é utilizada quando há três ou mais categorias sem uma ordem natural.

Conclusão

Em resumo, a regressão logística é uma metodologia estatística robusta e versátil que permite aos analistas de dados e pesquisadores examinar e prever o impacto de uma ou mais variáveis independentes sobre uma variável dependente categórica.

Dependendo da natureza dos dados, podemos escolher entre a regressão logística binária, ordinal ou multinomial, cada uma adequada a diferentes cenários e tipos de variáveis dependentes.

A regressão logística binária é ideal para situações com duas categorias mutuamente exclusivas, a ordinal lida eficientemente com categorias que têm uma ordem natural, enquanto a multinomial aborda cenários com três ou mais categorias desprovidas de uma ordenação específica.

Para aqueles que desejam se conhecer mais, existem outras postagem no blog, desde a diferença entre regressão logística e linear, métodos de seleção de variáveis independentes até um tutorial de como executar a regressão logística. Essas postagem podem servir como guias que facilitam a implementação desses modelos.

Esperamos que este post tenha ajudado você a entender melhor esses conceitos e como aplicá-los na prática.

Aproveite e inscreva-se no canal e aprimore suas habilidades em análise de dados!

Gostou desse conteúdo? Precisa aprender Análise de dados? Faça parte da Psicometria Online Academy: a maior formação de pesquisadores quantitativos da América Latina. Conheça toda nossa estrutura aqui e nunca mais passe trabalho sozinho(a).

Bruno Figueiredo Damásio

Sou Psicólogo, mestre e doutor em Psicologia. Venho me dedicando à Psicometria desde 2007.

Fui professor e chefe do Departamento de Psicometria da UFRJ durante os anos de 2013 a 2020. Fui editor-chefe da revista Trends in Psychology, da Sociedade Brasileira de Psicologia (SBP) e Editor-Associado da Spanish Journal of Psychology, na sub-seção Psicometria e Métodos Quantitativos.

Tenho mais de 50 artigos publicados e mais de 5000 citações, nas melhores revistas nacionais e internacionais.

Compartilhe sua opinião sobre este post

Deixe um comentário

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

Posts sugeridos

Como lidar com os pressupostos da Análise de Variância (ANOVA)?

Qual é a diferença entre covariância e correlação?

Diferenças entre Modelos Lineares e Modelos Lineares Generalizados (GLMs)

Conteúdo

Mais lidos

O que é regressão linear simples?

O que é correlação de Pearson?

O que é o teste de Shapiro-Wilk?

Teste t de Student

Postados recentemente

Curso R para Iniciantes

Como criar gráficos no R com o ggplot2?

Quais pacotes usar na análise fatorial exploratória no R?

Como reestruturar o formato do banco de dados no R?

Deseja se tornar completamente autônomo e independente na análise dos seus dados?

Junte-se a mais de 22.300 membros e receba conteúdos exclusivos e com prioridade

Bruno Figueiredo Damásio

Sou Psicólogo, mestre e doutor em Psicologia. Venho me dedicando à Psicometria desde 2007.

 

Fui professor e chefe do Departamento de Psicometria da UFRJ durante os anos de 2013 a 2020. Fui editor-chefe da revista Trends in Psychology, da Sociedade Brasileira de Psicologia (SBP) e Editor-Associado da Spanish Journal of Psychology, na sub-seção Psicometria e Métodos Quantitativos.

 

Tenho mais de 50 artigos publicados e mais de 5000 citações, nas melhores revistas nacionais e internacionais. Atualmente, me dedico a formação de novos pesquisadores, através da Psicometria Online Academy. Minha missão é ampliar a formação em Psicometria no Brasil e lhe auxiliar a conquistar os seus objetivos profissionais.

Compartilhe sua opinião sobre este post

Posts sugeridos

Como lidar com os pressupostos da Análise de Variância (ANOVA)?

Qual é a diferença entre covariância e correlação?

Diferenças entre Modelos Lineares e Modelos Lineares Generalizados (GLMs)

Categorias